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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-96

A METHOD FOR CALCULATING AFRODYNAMIC LOADINGS
ON THIN WINGS AT A MACH NUMBER OF 1

By John L. Crigler
SUMMARY

A method for calculating the aerodynamic loadings on thin wings at
a Mach number of 1.0 1s presented. The method differs from previously
developed lifting-surface procedures in that the chordwise integrations
are performed analytically and thus the need for numerical procedures
is eliminated. The spanwise integrations are then performed by numeri-
cal procedures. A detalled description of the method 1s included.

Calculated results are compared with experimental data for a swept-
wing—body configuration. The wing %-chord line was swept back 45°9; the

wing had an aspect ratio of 4 and a taper ratio of 0.15. The wing airfoil
section at the midspan was NACA 64A206, a = O which faired into an

NACA 64A203, a = 0.8 (modified) airfoil section at the O.5-semispan
location and retained this section from the midspan to the wing tip.

The magnitude and the distribution of the spanwise loading of the
calculated data at a free-stream Mach number Mgy of 1.0 are in good
agreement with experimental data obtained at My = 0.98 and 1.03. No

experimental data were cobtained at Mg = 1.0.

INTRODUCTION

The linearized theory of compressible flow for the calculation of
the aerodynamic loadings on thin wings of low aspect ratio at sonic
speeds has been used by a number of authors (e.g., refs. 1 to 3). Also
some discussion of the justification of the use of linearized theory for
this purpose within the framework of the nonlinear theory for transonic
flow is given in reference 4. Others (e.g., refs. 5 and 6) have devised
numerical procedures for treating finite-aspect-ratio wings for incom-
pressible flow. These procedures are easily adaptable to compressible
flow and in reference 7 a method for calculating the aerodynamic loading
on a wing in the speed ranges approaching a free-stream Mach number Mg
of 1.0 1s outlined. The method of reference 7 is similar to that devel-
oped by Falkner in reference 5 for treating wings in incompressible flow.



Calculated results of the magnitude of the load and the distribution of
the spanwise loading shown in reference T were generally in good agree-
ment with experimental data for all Mach numbers up to My = 0.98. Cal-
culations were also made in reference 7 for the case of Mg = 1.0 (the
procedure is not applicable at Mach numbers greater than 1) but the
agreement in this case was somewhat poorer than it was for subsonic Mach
nunbers. Reference 8 presents a method employing accurate numerical
schemes for incompressible flow which applies to wings with oscillatory
downwash conditions as well as to wings with steady-state downwash
conditions.

The analysis of this paper is based on the linearized theory of
compressible flow. The method used in making the calculations is some-
what similar to that used in reference T in that the calculation of the
forces on a wing depends on the solution of an integral equation which
relates the 1ift and downwash distributions. The unknown 1lift is expressed
as a series of terms involving certain unknown coefficients. The method
used herein differs from that in reference T chiefly in the manner of
performing the surface integrations, which are obtained in a manner sim-
ilar to that used in reference 8. For general application the surface
integrals must be evaluated by numerical procedures; however, examina-
tion of the integrand for the special case of My = 1.0 shows that the

chordwise integrations can be performed analytically, thus eliminating
the need for any approximate or numerical procedure. In using this method
for a value of My other than 1, the chordwise integration must be per-

formed by numerical procedure. The final spanwise integration is per-
formed by numerical procedures in elther case.

The calculations are made ror the wing alone and are compared with
experimental data for the wing-body combination of reference 7. This
method of comparison was used because calculations by the method of ref-
erence 7 for the wing alone and for the wing-body combination showed
that the only effect of the presence of the body was to reduce the loading
on the wing adjacent to the body. The loadings on the more important out-
board sections were not appreciably affected.

SYMBOLS
A= - i@ -
2
AR aspect ratio, EE—
Ansapm coefficients in expression for 1lift (eqs. (2) and (4))

b wing semispan, ft
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£(n)

&r

X,E

Yn

1ift coefficlent, L
a3

section chord, ft

% root chord, ft

section lift coefficient

dimensionless spanwise interval between integration stations,
referred to b (see sketch in section entitled "Spanwise
Integration of Downwash")

spanwise integral over region n

chordwise integral of 1lift (eq. (6))

complete chordwise integral at station r

kernel function

1ift, J/\z dy, 1b

section 1lift, f Al dx, 1b/ft

1ift at any point, 1b/sq ft

free-stream Mach number

dynamic pressure, %pv2, lb/sq ft
wing area, sq ft

dimensionless semispan, gl
o

airstream velocity, ft/sec
induced vertical velocity, ft/sec

dimensionless chordwise variable, referred to Cqo

dimensionless spanwise variable, referred to b



o angle of attack, deg
"
B=Y\L-M
o} unit length
€ dimensionless wing-chord distance from wing leading edge to
control point (as function of 13), referred to cg
2(8 - &
6 = cos"l ._(_III__)_
€te = E1e
A sweep angle for %--chord line, positive for sweepback, deg
A taper ratio, Tip chord
Root chord
v dimensionless chordwise variable, referred to ¢
p density of air, slugs/cu ft
Subscripts:
le leading edge
m midchord
te trailing edge

METHCD OF CAICUIATION

The method used in making the calculations is similar to that used
in reference 7 and is as follows:

Figure 1 shows a wing-panel diagram and the coordinate system used.
The equation relating the 1ift distribution to the local induced velocity
is given as

w(x,y) = - lmlpv /JFAl(é,n)K(x - &, y - n)dt dn (1)
S

=W



where the kernel function for the case of subsonic flow is

K(x-g,y-q)=_2___l__§E+ x - & ]
b=(y - n) f(x - £)2 + 82y - n)2

Note that for sonic flow (B = O) the downwash at any control point is
only affected by points ahead of the control point; that 1s, the incre-
ment in the bracket is 2 for (x - t) > O and becomes zero for

(x - £) < 0. Thus, for (x - ¢) 2 O,

2

K(x - &, y - 1) =
ve(y - n)2

and for (x - &) <O,

K(x - & y-1n) =0

In this case it is noted that the kernel function depends only on the
spanwise distance from the control point (x,y). The unknown lift dis-
tribution Al(g,n) in equation (1) is chosen to be expressed in the
form of a series of loading terms in both spanwise and chordwise coordi-
nates (ref. 7) as

8oV=b \ﬁ 2 0 2 .
AL(E,n) = — o\l - n° |eot E(aoo +Magy + MR, - .) + sin e(alo +

2 2
naqy + N8, * - .) + sin 26(&20 +Magy * NPEs, + e . .) + .

In figure 1

sy [ [l -]
(gte - gZe) [; - {nf(2 - Ki]

cos 0 =

From this relation calculate cot %, sin 6, and so forth, and substitute

these in the expression for the 1lift distribution which becomes
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2 1+ |njs tan A -3 |g|(1-2) - ¢

a(e,n) =8"me41 - 72 ¢ i 8o0 * Mgy * fl2a02 + .. ) +
l-]q|stan1\.-§|n|(l-)\)+§

2
| TN )

[1-(n1a-2) B1p *MByy + N2, ke - o)+

[n]s tan A - |—g—l—(l -N) - ¢

2t - nja - 2

2
\/E. - Inj(2 - )\ﬂe - Eﬂ‘s tan A - l—g—l(l -N - g

~(a20 + magy + n2a22 + .. ) ... (2)

For sonic flow equation (1) now becomes

13 or X

1 te
w(x,y) = - =1 f L f AL(E,m)ae (3)
eV Jas(y -2 Je

where the double upper limit on the chordwise integral means that the
integration stops at the trailing edge for values of 1 for which the
trailing edge is forward of the control point but stops at x for values
of 7 for which the trailing edge is rearward of the control point.

The problem now is to evaluate the integrals in equation (3) in
order to determine the unknown coefficients anm @&ppearing in the 1lift

distribution Al(t,n). Since the local induced velocity w(x,y) 1is
assumed to be known, it may be seen that the integrations yield equa-
tions for w(x,y) in terms of the unknown coefficients a,, appearing

in the 1lift distribution. Thus, by assuming the local induced velocity
(local slope of mean camber line) to be known at a selected number of
control points, a system of linear algebraic equations is obtained from

which the coefficients anm can be determined. The selected number of

control points, both spanwise and chordwise, correspond to the number
of chordwise and spanwise terms retained in the equation.
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Chordwise Integration of Downwash

In evaluating the integrals in equation (3), the procedure begins
with the chordwise integration. However, the manner in which the span-
wise integration is to be performed makes it desirable to divide each
panel of the wing into an even number of sections of equal width with
control points located on certain of the dividing lines. These section
intervals must be small in order to secure accuracy in the spanwise
integration. Then (for the My = 1.0 case) for each control point, the

chordwise integration is analytically performed along every dividing
line as indicated in equation (5). It is seen that the chordwise inte-
gration in equation (3) involves only an integration of the 1ift distri-
bution (eq. (2)), which becomes (for a wing having lateral symmetry)

gte or gle+e ~ 1 -
Al(E,n)dE = EAp \/e(E‘A - €) + 2A tan” \/.__] -
\/;Ze - 2A - €
EAy A2; £ Ve(2A - €) - A tan-1 f é] +
3/
EAE{(BT22->E(2A - 68 }-l-
A - € ( / ()
EAz Aj)EeA-e)j + oo
where
E = thgsAtan XV
A=1-a0 -2 J_t_e_;l_e
and

2 L
Ag = (aOO +M%ag, + ey + .. .4 qmaom)



N
A = (alO + q2a12 +naqy+ ...+ qmalm)

and where

¢ = Wing chord distance from leading edge to control point

Co

Substituting the expression for the lift given in equation (4) into
the integral equation (eq. (3)) gives the expression for the total local
downwash:

1
woy) - Btame [ (—f(-ﬂl)—g- an (5)
-L\y -7

where f(q) equals the chordwise integral of the 1ift along any particu-
lar chord and is given as

£(q) = __ﬂ_dlAQ Ao[\]e(zA - €) + 2 tan~t ‘ZEEG-_J - AlE‘EA €fe(on - €) -
)
N tan—l‘fﬁ%{] + AQ{B_% \’E(eA - &) } +
A - €yffe(on - ¢ > ... ;}
A3{A5 \/E A - €)]” +

Spznwise Integration of Downwash

As mentioned in the preceding section, the wing is divided into a
fairly large, even number of sections of equal width in order to secure
accuracy in the spanwise integration as shown in the following sketch:

FEW e
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The sketch shows one panel of a wing, where the distance D represents
the spanwise interval in the spanwise numerical integration. The sketch
shows that the chordwise integrations extend from the leading edge to x
or to the trailing edge, as has been previously noted.

After evaluating the chordwise integrals along every dividing line,
the spanwise integration across the entire wing was performed by numeri-
cal methods. In order to expedite this integration and retain a high

degree of accuracy and in order to handle the singularity at g =y,
the integration is performed as a sum of three different integrals, by
fixing the proper limits of integration of each region of the wing.

Thus, the integral in equation (5) may be written

1
£(n) 4
f ———dn =Fy + Fyp + Froq (6)
-1 (y - 9)°

where the integrals Fy, Fyy, and Frpy correspond to the regions I,
IT, and III shown in the sketch.

In order to obtain the integral Fypp for region III, the calculated
chordwise integrals f(n) were divided by the appropriate value of

(y - n)2 and the spanwise integration was performed by Simpson's rule.
For region III to the left of the control point, for example,
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Le

-5 (y-n)2 ky-n) (y-n2)2

2g Lg
2 + 4 + . . . (7)
(v - n5)° (v - ”4)2

where n, in the upper limit, is the number of divisions from the control
point to the first point considered in region III.

In region I, across the control point (x,y), and region II, adjacent
to the control point, other analytical methods were necessary. In the
integral Frq for region II the integrals change too rapidly for safe

use of Simpson's rule; the integral F; for region I involves the singu-

larity at n = y. A complete treatment of the singularity in the inte-
gral (in region I) is given by Mangler in appendix I of reference 6. For
regions T and II special rules were developed which analytically took

into account the term (y - n) Lagrangian interpolation methods were
used to develop an analytic functlon for f(n) in terms of the calculated
chordwise integrals. The integral of this function divided by (y - n)
was then obtained.

As an example, when f(q) in region I (across the control point)
was represented by a parabola, the following three-point integration
rule was obtained:

Fr = — 1 dn==2(g -4 (8a)
! fy-D (y - m)° ! D(gl €2 + &) -

where

D = Interval between lines or vortex width
b

For a five-point (see sketch) integration across the control point (x,y),
that is, from (y + 2D) to (y - 2D), the following integral relation
is obtained:

Fr = J/\y+2D ——fiﬂl—— an = 1 + 32g, - Bhg, + 32g, + g (8b)
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For region II adjacent to the control point (x,y), the integration for
a three-point solution is given by

5+2D
£(q) 1 f 2 2)
Frp = YV  gp=——=—_|(256° + 585D + 2D<Jg. - 45(5 + 2D)g, +
1 j; (y - )2 n D5(6+2D)$ 1 2
2 1 5+ 2D
L(s + D)g2 + (25 + D)gB—] (%,

where & = D times the number of spaces to the 1limit of region I. For
the case of a five-point integration across the control point (x,y),
as shown in the sketch, 5 = 2D.

For region II, the integration of a five-point solution (see sketch)
is given by

B5+4D
Fry = f ) o - s— [81(651’ + 51570 + 179202 + 1970° + 360") -
5 (y +n) 9075(5 + 4D)

g2(21+6u + 22057D + 5725202 + 46uBD]) + gi( 365" +
2886°D + 6786202 + 4ogsD7) - gh(245h + 1745°D + 3565°D° +
17650°) + g5(65“ + 397D + T16°D° + 355135)] -

1 1og, 2% 4D E;l(htﬁ + 3062D + T0BD° + 50D°) -

g,(1667 + 1085%D + 2086D° + 9%0°) + g5(26” + 152D +
208602 + T2D) - gh(1683 + 816D + 11200° + 320°) +

g5(l+a3 + 1852D + 206D° + 6D3)—j (9b)
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The spanwise integral of equation (5) to obtain the value of w(x,y)
is now given by the sum of the three integral parts; that is,

1
£ v
wx,y) = 20 g fl z_h)_)E an = 2120 = (r *Frp +Frpp) (10
-1 (y -

The results obtained in equation (10) express the downwash, at the control
point (x,y) in terms of the ordinates of f(n) by the sum of the results
in equations (7) to (9). This sum in turn expresses the downwash as a
linear expression in the unknown coefficients a,,. (See eq. (5).) By
evaluating the integrals for n x m control points, where the local slope
of the mean camber line at each control point is known, a system of alge-
bralc equations is obtained from which the coefficients a,, can be

determined.

Calculation of Aerodynamic Characteristics

The element 1lift for any point on the wing is given in equation (2) by

3
1+ [n]s tanA-—-"ql(l-)\) - £
alt(e,n) = 8__~_pvebctan T\ - g2 " 2 (aOO + Mag, + r]2302 + .. ) +

1 - |nls tanA-%]n](l-k) + ¢

%Z_qulst&nA;l—g—l(l-?\)-g]e{ )+

2
\alo + ey, + A, +

|T]|5 tan A - ITI_I

- ) -QV [l 2 ,
2A2 ,n'stava———(l )‘)'g(520+"821+n522""')"’"'

or the total 1ift (per unit span) on any chord is (note that c = 2coA)

th sc,
1 nafl - f te Al(e,n)dg

hpVec s
= ———K—Q— tan aﬁl - ne(ll iyt 1z + .) (11)

where

e
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3
l+s|q]tanA—§|n|(l-7\)-§d

1y = (8‘00 + nagy + 7125'02 + .. )

pl:l+s|n|tanA- %| i (l--?\)JV

- -1 -
-E.—s|n[tam-%(1-}\ﬂ 1-s|n|tana 2|n](l ) + &

and so forth. On chordwise integration

= (aOO + nagy + n2a02 + .. .)nA

-
|

= 2 n
(alo + nag; +t ey . .)§-A

o
1

15, Zl}-, PO T lTI:O

For a symmetrical wing for three spanwise control-point locations, the
total 1ift (per unit span) on any chord is given by

2
LpV=eys
1 = _E_K_Q_ tan a\ﬁ - nQAn[(aoo + q2a02 + nhaou) + %(alo + n2312 + nualuﬂ

(12)

or the section lift coefficient is

SL{N
- \ﬁ 2! 2 L 1 2 L
¢, =3 tan a\ll - 7 (aOO + N%g, + 1) aOh) + §<alo + N%a, + 1 al;ﬂ

(13)
But the total 1ift on the wing is
s
-8
or
1
jp 1l dny
-1 (
- 14)
CL 12
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1
4an2b2 tan a ‘ 2
Cr = N 1 -n (300 *+ 1Pagp + “Maou) +

1.2
S
épV
1 2 L
E(alo + %8, + alhildn (15)
2
_ Bnb” tan afn 1 i 1 T 1
Cp = '_s——[§<aoo t3 aL10) + g(aoe t 3 12) + ‘1‘6‘(&04 T3 alu)
(16)
For
PR
S
the 1lift coefficient becomes
ngAR tan o
Cr, = __—aig————<l6aoo + 8apy + hao2 + 289, + 28y, + alh) (17)
The slope of the 1lift curve is
ac 2
L _ n°RR
Py (l6aoo + Bayy + 4a02 + 281, + 284, + alh) (18)

The ratio of the section 1lift coefficient cy at any station y
to the total 1ift coefficient Cy 1is

1 2 1 4 1 )
ey _ 325\8 - 72 (aoo *3 a10) 7 (aoe *3 alE) o (aou T2
C1, ntbe (l6aoo + 8a) + bay, + 281, + 284, + alh)

(19)

e
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MODEL AND PROCEDURE

The wing plan form and details of the wing-body configuration are
shown in figure 2. The wing %u-chord line was swept back h5°; the wing had

an aspect ratio of 4 and a taper ratio of 0.15. The wing airfoil section
at the midspan was NACA 64A206, a = O which faired into an NACA 6L4A203,

a = 0.8 (modified) airfoil section at the 0.5-semispan location and
retained this section from the midspan to the wing tip. Calculations
were made for the wing alone. The experimental data used in the com-
parisons were obtained from tests made in the langley 8-foot transonic
tunnel on the same wing in combination with the body. (Details of the
body are given in fig. 2.) Other experimental data and further details
of the wing~body combination are given in reference 9.

Mean camber lines, in percent chord, of two wing sections are shown
in figure 3. The sections shown correspond to the spanwise control-
point locations. Besides the camber built into the sections, there is
a wing twist due to aeroelastic effects when the wing experiences 1lift.
Influence coefficients due to normal-force and pitching-moment loads
were obtained by static-deflection calibrations of the wing in order
to evaluate the wing twist due to aeroelastic effects. The spanwise
variation of twist for the wing-body configurations for an angle of
attack of 4.00 is shown in figure & for My = 0.98 and Mgy = 1.03.

The calculated loadings were made on the assumption that the wing at
My = 1.0 was pretwisted by an average value of the curves for Mo = 0.98

and Mg = 1.03.

Twelve control-point locations were chosen for the calculations
made by the method presented herein. Calculations were made for all
12 points and for several combinations of 9 control points. The exact
locations of the control points, both chordwise and spanwise, are given
in table I. The spanwise locations were chosen at 0.25, 0.50, and 0.80
of the semispan. The chordwise locations in each case were selected so
that if the Mach line through the control point intersected the leading
edge, the intersection occurred at the same spanwise location as the
division made for integration purposes. These selections, chosen so that
no fractional spanwise divisions resulted, were made purely to simplify
the spanwise integration.

COMPARISON OF EXPERIMENTAL AND CAICUIATED RESULTS

Figure 5 shows a comparison of the calculated and the experimentally
measured spanwise loading plotted against the wing semispan. The
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calculated data are tabulated in table II. The data are for an angle of
attack of 4.0°. The experimental data are for the wing-body combination
shown in figure 2, since no experimental data were obtained for the wing
alone. Also these data are presented for Mach numbers of 0.98 and 1.03

since no experimental data were obtained for M, = 1.0. All of the cal-

culated data are for the wing alone and for a Mach number of 1.0. The
comparison of computed data for the wing alone with the experimental data
for the wing-body configuration is made on the basis of the good agree-
ment between calculated data for the wing alone and those for the wing-
body configuration at subsonic speeds shown in reference 7, where only
an empirical method for correcting for the body was presented. The shape
or distribution of the loading for the calculated data at My = 1.0 1is

about the same as the shape of the experimental curves for My = 0.98

and My = 1.03. The magnitude of the lift for the calculated data for

Mo = 1.0 1is about 10 percent higher than the experimental data at

Mg = 0.98 which is greater than the value for Mg = 1.03. Of particular
interest, however, is the agreement of the calculated spanwise distribu-
tion of lift, both in shape and magnitude, for the various selections of
control points.

For the calculations using all 12 control points, or any combina-
tion of 9 points that was selected, the total calculated 1lift and the
slope of the 1lift curve were essentially the same, the maximum variation
from the mean value being *1 percent. (See fig. 5.) Small variations
in the distribution of the loading were found for each set of control
points, the greatest variation for any 9 points being found for the
9 most forward control points. In these calculations only the effect of
a change in the chordwise location of the control points was investi-
gated; no changes were made in the locations of the control points in
the spanwise direction. However, an examination of the method of span-
wise integration shows that it is desirable to exclude control points
from regions near the wing root or wing tip to insure accuracy in the
spanwise integration. The data in figure 5 indicate that, for the method
of integration used herein, for a wing of similar plan form and camber,
the location of the control points is not a critical parameter in the
calculation of the total wing loading or the span load distribution for
the My =1 case. It appears that 9 control points located similarly

to those in any of the sets used, may be sufficient since any set of
9 points, or all 12 points, give results in substantial agreement with
the experimental data.

On the other hand, the method of reference 7 may not be applicable
to a wing plan form of the shape used herein. For such a plan form the
area ahead of the trailing-edge apex, which constitutes about two-thirds
of the total wing area, cannot be affected by the region of the trailing
edge, so that any analysis based essentially on two-dimensional subsonic-
airfoil concepts would hardly be legitimate. The method, however, may

= O
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be applicable for a sweptback wing with a very high aspect ratio where
a relatively smaller portion of the area ahead of the trailing-edge apex
would be affected.

By way of illustration, spanwise loadings for the wing alone were
calculated for Mg = 1.0 by the method of reference 7 and have been
plotted against the wing semispan in figure 6 in order to obtain a com-
parison of results calculated by the two methods of integration. (Com-
pare figs. 5 and 6.) (The wing twist under load shown in fig. 3 was also
used in this case.) Also shown in figure 6 are the experimental data
points (obtained for a wing-body combination) for My = 0.98 shown in
figure 5. In order to obtain greater accuracy, the calculations in fig-
ure 6 were made for the 328-vortex pattern with eight load lines described
in reference 10 instead of the 84-vortex pattern with four load lines used
in reference 7. There are seven possible chordwise positions for the
328-vortex pattern but, when only three positions are used for the incom-
pressible flow case, Falkner (ref. 10) recommended the 1/4, 1/2, and
3/4 chordwise locations. Similarly, when only three spanwise positions
are used, the 0.2, 0.5, and 0.8 semispan stations were recommended.

Table III gives the location of the control points used for the various
solutions. The results of the calculations plotted in figure 6 are tab-
ulated in table IV. Figure 6 and teble IV show that the 1lift distribu-
tions obtained by this method of integration for the Mgy = 1.0 case

are critically dependent on the selection of control points. For example,
solution 8 (control points at 1/4, 1/2, and 3/4 chordwise locations) or
solution 9 (control points at 1/4, 1/2, and 7/8 chordwise locations) are
both similar in shape to the experimental data. However, when all 12 of
these points are used, solution 7, the shape is no longer in agreement,
although it might be expected with more points that the agreement would
be superior. In solution 10 (control points at 1/2, 3/4, and 7/8 chord-
wise locations), the discrepancy between calculsted and experimental data
becomes much greater, although it might have been expected that greater
accuracy would be obtained with the control points towards the rear of
the wing.

Figure 7 shows a comparison of data calculated by the method of
reference 7 and the present method at a high subsonic speed, M, = 0.98,

for an angle of attack of 4.0°. The experimental data for Mg = 0.98

are also shown in the figure. The data calculated by the method of ref-
erence T are for the wing-body combination of the experimental data

taken from reference 9, but the data for the method used herein are for
the wing alone. In the latter case it was necessary to perform the
chordwise integration by numerical procedures. The same wing twist under
load (see fig. 3) and the same control-point locations were used for both
sets of calculations. The calculations were made for two sets of control
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points by the method in this report and, as was found at My = 1.0,

there was a small difference in the total 1lift and in the distribution
of 1ift for a change in control-point location (fig. 7).

CONCLUDING REMARKS

A detailed method for calculating the aerodynamic loading on a thin
wing at a Mach number of 1.0 is presented. A comparison of the calculated
load distributions with experimental results indicated that, for the wing
tested, the magnitude and distribution of the calculated spanwise loading
are in good agreement with experiment at a Mach number of 1.0.

Langley Research Center,
National Aeronautics and Space Administration,
lLangley Field, Va., May 27, 1959.
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TABLE II
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CALCULATED LIFT COEFFICIENTS FOR M, = 1.0 AND o = 4.0°

Section 1ift coefficients for -

M1=0.12|1=0.25|7=040|n=0.60{1n=0.8]|n=0.90|9=0.95
Solution 1; 12 control points; ZEL = 0.1065

0.512 0.511 0.502 0.463 0.340 0.240 0.170
Solution 2; control points 1, 2, 3, 4, 5, 6, 7, 8, 9; g:? = 1.067
0.555 0.538 0.500 0.430 0.318 0.235 0.172

Solution 3; control points 1, 2, 3, &, 5, 6, 10, 11, 12; 952 = 0.1085
0.532 0.530 0.518 0.465 0.341 0.235 0.165

Solution 4; control points 1, 2, 3, 7, 8, 9, 10, 11, 12; %gé = 0.1078
0.517 0.516 0.505 0.461 0.347 0.246 0.170

Solution 5; control points 4, 5, 6, 7, 8, 9, 10, 11, 12; ggé = 0.1073
0.530 0.526 0.509 0.452 0.334 0.240 0.162

Solution 6; control points 4, 5, 6, 7, 8, 9; ggé = 0.1065

0.555 0.532 0.495 0.420 0.315 0.232 0.170
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TABLE IV

23

LIFT COEFFICIENTS CALCULATED BY METHOD OF REFERENCE 1

FOR My = 1.0 AND a = 4.0°

Section 1ift coefficients for -

1 = 0.25 n = 0.40 n = 0.60 n =0.8 n = 0.90 n=0.95
dcy,
Solution 7; 12 control points (see table III); = = 0.118
0.400 0.452 0.515 0.540 0.460 0.357
. acy,
Solution 8; control points 1, 2, 3, 4, 5, 6, 7, 8, 9; el 0.1190
0.575 0.556 0.501 0.382 0.271 0.192

dc -
Solution 9; control points 1, 2, 3, 4, 5, 6, 10, 11, 12; EE% = 0.1103

0.538 0.518 0.455 0.341 0.243 0.172
Solution 10; control points 1, 2, 3, 7, 8, 9, 10, 11, 12; ac _ 0.0679
-0.095 0.142 0.516 0.715 0.64k4 0.501

d
Solution 11; control points 4, 5, 6, 7, 8, 9; EEE = 0.0996
a

0.53h

0.465

0.360

0.258

0.197

0.149
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